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Ab initio lattice dynamics and elastic constants of ZrC
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Abstract. Ab initio calculations and a direct method are applied to derive the phonon dispersion relations
and phonon density of states for the ZrC crystal. The results are in good agreement with neutron scat-
tering data. The force constants are determined from the Hellmann-Feynman forces induced by atomic
displacements in a 2×2×2 supercell. The elastic constants are found using the deformation method and
successfully compare with experimental data.

PACS. 63.20.-e Phonons in crystal lattices – 71.15.Mb Density functional theory,
local density approximation

Studies of transition-metal carbides have been car-
ried out several times. Phenomenological model calcula-
tions [1–3] managed to reproduce the phonon dispersion
relations quite well, but the interactions were quite so-
phisticated, some of them including three-body interac-
tions and double shell models. Recently, there have been
several studies based on ab initio methods [4–7]. The elec-
tronic structure, bulk modulus, and elastic constants, as
well as the phonon dispersion relations have been found for
TiC, TiN and TiO compounds by means of first-principles
total-energy calculations [8,9]. Generally, the calculated
values show good agreement with experiments. This pro-
vides a motivation to extend the investigation to heav-
ier transition metals and to treat zirconium carbide, ZrC.
This crystal is an important material in nuclear energy
technology, since it provides a filling medium for fuel par-
ticles. It is also used for surface hardening and coverage
of cathodes of X-ray sources. In this paper we continue
to study the lattice dynamics and elastic properties of
transition-metal compounds. See [8] and references given
there for a more detailed description of the method.

The transition-metal carbide compounds, of which
ZrC is a representative, are of considerable scientific and
technological interest because of their striking mechan-
ical properties, extreme hardness combined with metal-
lic electrical and thermal conductivities. The ZrC crystal
has NaCl structure and it is usually non-stoichiometric,
mainly owing to carbon-vacancy defects. The phonon dis-
persion relations of ZrC have been measured along main
symmetry directions by Smith et al. [10,11]. Elastic con-
stants, in turn, have been measured for two concentra-
tions of carbon (ZrC0.89 and ZrC0.94) by Chang and
Graham [12].

In this paper we extend the first-principle calculations
to describe the phonon dispersion curves, phonon density
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and elastic constants of ZrC. The method which is used,
is based on the total energy calculation and Hellmann–
Feynman (HF) forces. The phonon dispersion relations
are calculated by the direct method and the Phonon

program [13–18], in which the force constants of the dy-
namical matrix are derived from HF forces. Alternatively,
one could use the linear-response method [19,20] for the
evaluation of ab initio phonon frequencies at a predeter-
mined set of Brillouin zone points. Elastic constants and
bulk modulus are estimated by straightforward evaluation
of energy derivatives with respect to the deformations.

The energies and HF forces of ZrC crystal are calcu-
lated by the method of total energy minimization, using
norm-conserving pseudopotentials as an approximation
for the atomic core-valence electron interaction [21–23].
This method allows to include the pressure in calculations
as well as anharmonic effects. For the lattice dynamics cal-
culations a 2×2×2 supercell with periodic boundary con-
ditions and 64 atoms was used. For optimizing the struc-
ture and for the direct calculation of stress-strain relations
a 1×1×1 supercell was utilized. The ab initio total energy
calculations were done with the CASTEP package [24]
and standard pseudopotentials constructed within LDA
approximation and provided within this package. The Zr
pseudopotential treats 4d electrons as belonging to the va-
lence band. All pseudopotentials were parametrized in the
reciprocal space with 680 eV cut-off energy.

Tests, which were made with the 1×1×1 supercell and
with cut-off energies of 680 eV and 900 eV, showed that
in the first case the cohesive energy is only 0.01 eV higher,
and the lattice constant changes by only 0.0007 Å (0.01%).
Therefore, we used the 680 eV cut-off energy for all re-
maining calculations.

The local density approximation (LDA) as well as
the generalized gradient approximation (GGA) were used
for the exchange energy term of the valence states of
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the Hamiltonian [25]. The integration over the Brillouin
zone was performed with weighted summation over wave
vectors generated by the Monkhorst-Pack scheme [26] us-
ing grid spacings from 0.1 Å−1 to 0.04 Å−1 which lead
to sets of k-vectors containing from 4 to 118 wave vec-
tors for the 1×1×1 supercell and from 1 to 14 wave vec-
tors for the 2×2×2 supercell. The convergence of the force
constants was achieved for grid spacing below 0.05 Å−1.
Hence, we carried on the optimization for a 0.05 Å−1 grid
spacing, which leads to 32 and 4 k-points for the 1×1×1
and the 2×2×2 supercells, respectively. However, we used
a 64 wave-vector set for the LDA calculation of the elastic
constants. The metallic character of the TiC compound,
studied in [8], indicated that the use of smearing does not
substantially improve the quality of phonon dispersion re-
lations. Thus, we did not use smearing in the case of ZrC.
The use of non-metallic summation of the Brillouin zone
is further justified by the fact that the electron density
of states at the Fermi level is small for ZrC and similar
compounds: TiC and HfC [1,27], and the related errors
are of the same order as the errors of the DFT approach
itself [8]. Namely, they are less then 0.05% for the lattice
constant, less then 0.3% for the bulk modulus, and less
then 5% for phonon frequencies.

The minimization of the total energy leads to the
equilibrium lattice constant of the stoichiometric ZrC
a = 4.691 Å for LDA and a = 4.695 Å for GGA. These
values could be compared with the experimental values
of a = 4.6994 Å for ZrC0.94 and a = 4.7004 Å for
ZrC0.89 [12]. The phonon dispersion relations, which cor-
respond to temperature T = 0, are shown in Figure 1.
These are compared with experimental phonon frequen-
cies measured by inelastic neutron scattering [10,11]. For
GGA, the calculated force constants for all 10 coordi-
nation spheres of the 2×2×2 supercell are presented in
Table 1.

From Figure 1 one sees that the experimental data
at the Γ point are about ∆ω = 0.05ω lower than the
calculated values. A reason for this could be that the ex-
perimental values are measured at room temperature and
that anharmonic effects diminish the phonon frequencies.
Another reason may relate to the non-stoichiometric con-
centration of carbon, which diminishes the average phonon
frequencies as well. In other ab initio calculations for alkali
metals [13], graphite and diamond [14] the experimental
phonon points also are at frequencies lower than calcu-
lated ones. On the same Figure 1 we see the influence of
the different exchange-correlation energy approximations
on phonon frequencies. In this case, the LDA appears to
be far less accurate than the GGA.

By sampling the dynamical matrix at many wave vec-
tors, one can calculate the phonon density of states g(ω),
and the partial phonon density of states gx,Zr(ω) and
gx,C(ω). The g(ω) describes the number of phonon fre-
quencies in an interval around ω, while gx,Zr and gx,C
specify the number of phonon frequencies in an interval
around ω, but only taking into account vibrations of Zr
and C atoms, respectively. The density-of-state functions
calculated from the GGA data are shown in Figure 2.
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Fig. 1. Phonon dispersion relations of ZrC crystal calculated
with a 2×2×2 supercell within GGA (full line) and LDA
(dashed line) approximations. The experimental points are
taken from reference [10,11].

They are conventionally normalized to
∫
g(ω)dω = 1 and∫

gx,α(ω)dω = 1/6, where α = Zr or C. The curves show
that motions within acoustic dispersion curves are almost
entirely due to Zr atoms. The sum of the zirconium density
of states (gx,Zr(ω) + gy,Zr(ω) + gz,Zr(ω)) fits the total den-
sity of states g(ω) below 10 THz. The part of g(ω) above
the gap is mainly due to vibrations of C atoms. Thus, ZrC
forms quite a special crystal, in which the heavy Zr atoms,
form a frame for the elastic motion, and the C atoms vi-
brate within the optical modes. We see in Table 1, that
the magnitudes of the force constants between Zr–C and
between Zr–Zr and C–C at a similar distance remain of
the same order. Thus, ZrC does not consist of two weakly
bounded subsystems. The situation is similar in TiC [8].
In Figure 2 the experimentally determined phonon den-
sity of states taken from reference [28] is also shown. The
agreement within the acoustic region is quite good. In the
optical region the experimental resolution of ≈ 2.5 THz
and the non-stoichiometry of carbon lead to considerable
broadening.

The bulk modulus was calculated in the 1×1×1 su-
percell from the relation of pressure to the lattice con-
stant. These data were fitted to a fourth order polyno-
mial. Hence, the derivative ∂P/∂V , and the bulk modulus
B were calculated from the relation: B = −V (∂P/∂V ),
where V is the volume of the ZrC crystallographic unit
cell. For LDA and GGA, the B values are given in Table 2
and they agree quite well with experimental data. We also
derived the bulk modulus from the energy-deformation
relationship and the stress–strain relations, and the last
proved to be more accurate than differentiation of the to-
tal energy curve (see Tab. 2).

We used stress-strain relations to obtain the elastic
constants. The calculations of c11, c12, c44 elastic constants
involved elongation and shear deformations. Deformations
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Table 1. Values of the non-zero elements of the force-constant matrices derived from a 2×2×2 supercell in GGA (in N/m). All
force-constant matrices are symmetric.

Distance (Å) From To xx yy zz yz xz xy

0.0 C(0,0,0) C(0,0,0) 219.36 219.36 219.36
0.0 Zr( 1

2 ,
1
2 ,

1
2 ) Zr( 1

2 ,
1
2 ,

1
2 ) 284.67 284.67 284.67

2.3447 C(0,0,0) Zr( 1
2 ,0,0) -24.20 -23.82 -23.82

3.3159 C(0,0,0) C( 1
2 ,

1
2 ,0) -5.77 -5.77 0.64 -10.41

3.3159 Zr( 1
2 ,

1
2 ,

1
2 ) Zr(1,1, 12 ) -15.67 -15.67 -3.68 -31.66

4.0611 C(0,0,0) Zr( 1
2 ,

1
2 ,

1
2 ) -1.90 -1.90 -1.90 -1.20 -1.20 -1.20

4.6894 C(0,0,0) C(1,0,0) -21.97 1.02 1.02
4.6894 Zr( 1

2 ,
1
2 ,

1
2 ) Zr(1 1

2 ,
1
2 ,

1
2 ) -17.47 3.82 3.82

5.2429 C(0,0,0) Zr(1, 12 ,0) 2.63 -0.01 0.53

5.7433 C(0,0,0) C(1, 12 ,
1
2 ) 0.37 0.36 0.36 -0.15 -0.02 -0.02

5.7433 Zr( 1
2 ,

1
2 ,

1
2 ) Zr(1 1

2 ,1,1) 0.39 0.28 0.28 0.41

6.6318 C(0,0,0) C(1,1,0) -0.94 -0.94 -0.05
6.6318 Zr( 1

2 ,
1
2 ,

1
2 ) Zr(1 1

2 ,1
1
2 ,

1
2 ) 0.52 0.52 -0.06

7.0341 C(0,0,0) Zr(1,1, 12 ) -0.13 -0.13 -0.09

8.1223 C(0,0,0) C(1,1,1) -0.03 -0.03 -0.03
8.1223 Zr( 1

2 ,
1
2 ,

1
2 ) Zr(1 1

2 ,1
1
2 ,1

1
2 ) -0.01 -0.01 -0.01

0 5 10 15 20
Frequency [THz]

0

0.05

0.1

0.15

0.2

0.25

g(ω) [A.U.]

Zr
C
Total
Exper.

Fig. 2. Phonon density of states g(ω) of the ZrC crystal and
partial phonon density of states gi,α(ω), where α = C or Zr
and i = x, y or z are the displacement directions. These are
the GGA results. Experimental data taken from reference [28].

from 0.5% to 3% in length and from 1 to 5 degrees in
angle are used. The results of small and large deformations
are consistent. The deformed lattices have space groups
Fm3̄m, I4/mmm and I/mmm, for bulk expansion, elonga-
tion along z, and shear modes, respectively. In all these
deformed lattices all atoms remain in high-symmetry sites
so that the relaxation of the internal degrees of freedom
during the supercell deformations are not necessary. The
calculated elastic constants are compared with the exper-
imental data in Table 2. Generally they are in good agree-
ment with experiments. The c12, c44 elastic constants are

Table 2. Experimental and calculated bulk modulus B and
elastic constants cij of the ZrC crystal, in units of 1011 Nm−2 =
1 MBar. Values in parentheses are calculated from B = 1

3 (c11+
2c12).

Result B c11 c12 c44

Expt ZrC0.94 [10] (2.231) 4.720 0.987 1.593
Expt ZrC0.89 [10] (2.225) 4.682 0.997 1.573
ZrC extrapolated (2.238) 4.766 0.975 1.617
Calc. LDA (2.270) 4.716 1.047 1.348
Calc. LDA (energ.) 2.295
Calc. GGA (2.279) 4.802 1.018 1.697
Calc. GGA (energ.) 2.32

better reproduced by the GGA, but also c11 fits better
with GGA, when experimental data are extrapolated to
the stoichiometric ZrC (third row in Tab. 2).

In summary, we have shown that the ab initio calcu-
lations of HF forces together with the direct method lead
to a satisfactory description of phonons and elastic con-
stants in the ZrC crystal. The phonon dispersion relations
and the density of states fit well to neutron experimen-
tal data. The GGA offered better phonon frequencies and
elastic constants.
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